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Abstract 

A formal statistical dynamical theory is developed to 
calculate diffuse scattering produced by short-range 
order (SRO) in a distorted crystal structure with 
consideration of atomic thermal vibrations. Diffuse 
scattering not only produces fine details in diffrac- 
tion patterns but also introduces a non-local 
imaginary potential function that reduces the inten- 
sities of the Bragg reflected beams. The distribution 
of the diffusely scattered electrons and the Fourier 
coefficients of the absorption potential are directly 
related to a dynamic form factor S(Q,Q'), which has 
been calculated with consideration of SRO in the 
distorted lattices. The statistical structure average on 
imperfections is performed analytically and the final 
result is correlated to Cowley's short-range-order 
parameters. The theory is formulated in the 
Bloch-wave scheme (Bethe theory) for the con- 
venience of numerical calculation in transmission 
electron diffraction. A rigorous theoretical proof is 
given to show that the inclusion of a complex 
potential in the dynamical calculation automatically 
recovers the contributions made by the high-order 
diffuse scattering, although the calculation is done 
using the equation derived for single diffuse 
scattering. This simply expands the capability of 
conventional single diffuse scattering theories. There- 
fore, the complex potential has a much richer 
meaning than the conventional interpretation of 
absorption effect. 

1. Introduction 

The study of point defects is becoming increasingly 
important in the characterization of advanced 
functional materials. We take La l_xCaxMnO 3 
(LCMO), a material that has been found to exhibit 
a colossal magnetoresistance (CMR) effect (Jin, 
Tiefel, McCormack, Fastnacht, Ramech & Chen, 
1994), as an example. An ordered lattice substitution 
of La 3+ by Ca 2+ creates excess local negative 
charge, which is balanced partly by the valence 
conversion of Mn 3+ into Mn 4÷ and partly by 

creation of oxygen vacancies (Jonker & van Santen, 
1953), thus the charge structure of LCMO is 

L 3 +  ~-~ 2 + , ,  • 3 +  ,,  • 4 +  . - - . 2 -  O 
a l _ x t - . a x  Mnl_x+2ylVlnx_2yL)3_y Vy , 

where V ° stands for the ratio of oxygen vacancies. The 
conductivity of LCMO is due to the transfer of electrons 
between Mn 3+ and Mn 4+ (Zener, 1951), and the 
transfer probability of the electrons is directly related 
to the angle Ogij between the spins of the Mn ions 
(Anderson & Hasegawa, 1955; De Gennes, 1960), 
possibly resulting in the dependence of the electric 
conductivity of LCMO on the strength of the applied 
magnetic field (i.e. the magnetoresistance effect). 

Determination of the short-range-order (SRO) struc- 
ture of oxygen vacancies, however, is a challenge to 
existing structure-analysis techniques. Transmission 
electron microscopy, as a technique for probing the 
crystallographic structure of small crystals (for reviews, 
see Spence & Zuo, 1992; Cowley, 1992, 1993), is 
likely to play a unique role in determining crystal 
structures containing modulated (or distorted) lattices 
(Amelinkx & Van Dyck, 1993; Gjonnes, 1993). Recent 
studies of SRO of oxygen vacancies in cubic ZrO 2 
stabilized by Y203 and MgO by electron diffraction 
have demonstrated its experimental feasibility (Dai, 
Wang, Chen, Wu & Liu, 1996; Dai, Wang & Liu, 
1996). In addition, progress in instrumentation has 
made it possible to filter off contributions made by 
electrons that have suffered energy losses larger than a 
few eV (for a review, see the book edited by Reimer, 
1995), thus, quantitative structure determination using 
the energy-filtered electron diffraction and image 
information is a future direction of electron microscopy. 
Quantitative microscopy is possible only when a well 
established theory is available. Even though there are 
several approaches that have been developed to solve 
the Schr6dinger equation for high-energy electron 
diffraction (for reviews, see Cowley, 1995; Wang, 
1995a), the Bethe theory (Bethe, 1928) and the multi- 
slice theory (Cowley & Moodie, 1957) are the most 
useful ones. The Bloch-wave theory is best suited for 
calculating diffraction patterns of a periodically 
structured crystal; the multislice theory is an optimum 
choice for simulations of high-resolution transmission- 
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electron-microscopy (HRTEM) images of crystals 
containing defects. HRTEM images recorded from a 
crystal containing SRO structure can be properly 
calculated using the multislice theory (De Meulenaere, 
Van Dyck, Van Tendeloo & Van Landuyt, 1995; Van 
Dyck, 1985) because the atom arrangement in each slice 
can be chosen differently. Diffraction data recorded 
from a crystal containing SRO of point defects, 
however, cannot be calculated using the Bloch-wave 
theory because of the non-periodic crystal structure. 
Moreover, the perturbation produced by SRO on crystal 
structure can vary from unit cell to unit cell, thus a 
statistical dynamical diffraction theory is required. 

The statistical dynamical diffraction theory has been 
proposed (Kato, 1980, 1991; Becker & A1 Haddad, 
1990, 1992) based on the Takagi-Taupin equations 
(Takagi, 1962; Taupin, 1964). The theory was devel- 
oped to deal specifically with the propagation of the 
average Bragg beam amplitudes at the presence of 
statistical imperfections in the crystal, but the diffuse 
scattering produced by the imperfections was not 
calculated. Although the kinematical diffuse scattering 
theory of crystals containing point defects has been 
developed for many years (Borie, 1957, 1959; 
Hayakawa & Cohen, 1975; Cowley, 1995), the 
dynamical theory needed for quantitative data analysis 
is still at an early stage. The multislice theory of Cowley 
& Moodie (1957) has been applied to perform 
dynamical calculations of electron diffraction of TDS 
and SRO (Cowley & Pogany, 1968), in which a large 
unit cell and a variety of different crystal slices need to 
be constructed in order to account for the spatial 
variation in the distribution of point defects, provided 
pre-knowledge of the real-space distribution of the SRO 
point defects is available. 

In this paper, a new theoretical scheme is proposed to 
calculate diffuse scattering patterns generated by SRO 
and atomic thermal vibrations in crystal lattices. After 
reviewing the diffuse scattering in electron diffraction 
(§2), a general theory is proposed to calculate the 
statistical diffraction intensity of diffusely scattered 
electrons (§3). This theory is given in the Bloch-wave 
representation best suited for numerical calculations. It 
is proved that the calculation of diffuse scattering is 
entirely determined by a dynamic form factor S(Q,Q'). 
The calculations of this factor for two cases involving 
SRO of point defects are given in §4. Finally, the 
absorption potential introduced by thermal diffuse 
scattering (TDS) and SRO is also derived and its role 
in recovering the high-order diffuse scattering is proved 
rigorously (§5). 

are generated by the periodically structured lattice of 
the crystal, while the diffuse scattering is produced by 
the non-periodical components including thermal 
vibrations of the crystal atoms and SRO of defects. 
Thermal diffuse scattering (TDS) exists even for a 
perfect crystal without defects because atomic vibra- 
tion is a non-periodic perturbation on the crystal 
potential. Fig. 1 shows an electron diffraction pattern 
recorded at 200 kV from an Ag foil. The TDS streaks 
observed in the pattern are determined by phonon 
dispersion relations of the acoustic branches (Honjo, 
Kodera & Kitamura, 1964; Komatsu & Teramoto, 
1966; Wang, 1992). A general feature in the TDS 
diffraction pattern is that all the streaks run along the 
lines interconnecting the Bragg peaks. For a mono- 
atomic cubic structure, a simple rule has been 
proposed to directly predict the directions of the 
streaks in diffraction patterns from the unit-cell 
structure of the crystal (Wang & Bentley, 1991). 
This is a distinct difference from the diffuse scattering 
produced by SRO of point defects, as shown in Fig. 
2. Dynamical theories for calculations of diffraction 
patterns and images of TDS electrons have been 
extensively developed based on the multislice 
approach (Cowley, 1988; Fanidis, Van Dyck, Coene 
& Van Landuyt, 1989; Coene & Van Dyck, 1990; 
Fanidis, Van Dyck & Van Landuyt, 1992; Wang, 
1990, 1992, 1995b; Wang & Bentley, 1991; Dinges, 
Berger & Rose, 1995), the Bloch-wave approach 
(Rossouw, 1985; Rossouw & Bursill, 1985) and the 
Green-function approach (Dudarev, Peng & Ryaza- 
nov, 1991; Wang & Li, 1995). 

2. Diffuse scattering in electron diffraction 

Diffuse scattering is produced by structure modulation 
in a crystalline specimen, and it is usually distributed 
between Bragg reflected peaks. The Bragg reflections 

Fig. 1. A (013) electron diffraction pattern recorded from a thin Ag 
foil showing many diffuse scattering streaks caused by thermal 
diffuse scattering. 
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Fig. 2 shows a diffuse scattering pattern recorded 
from a cubic ZrO 2 stabilized by Y203 and MgO. The 
diffuse scattering pattern is produced by the oxygen- 
vacancy short-range order (Dai, Wang, Chen, Wu & 
Liu, 1996). The distribution of diffuse scattering 
intensity is rather complex and a three-dimensional 
geometrical model in reciprocal space is established 
for describing the equal-intensity contours of diffuse 
scattering observed experimentally. The intensity 
pattern reflects the correlation and order of oxygen 
vacancies in the specimen. Electron diffraction is 
probably the most sensitive and localized technique 
that can be applied to study SRO of point vacancies, 
which is an important aspect in studying oxide 
functional materials because the variation of cation 
valences is compensated by creating oxygen vacan- 
cies. A detailed study of this pattern has been 
performed using the kinematical scattering theory 
(Dai, Wang & Liu, 1996). 

In general, the diffuse scattering created by SRO 
cannot be easily separated experimentally from that 
produced by TDS. It is thus necessary to include 
both processes in theoretical calculations. The theory 
proposed in this paper is designated for this 
purpose. 

3. A general approach 

To include in calculation the effects produced by atomic 
thermal vibrations and structure distortion due to SRO, 

Fig. 2. A (013) electron diffraction pattern recorded at 120kV from 
cubic ZrO 2 stabilized by Y203 and MgO showing diffuse scattering 
created by oxygen vacancies in the crystal (courtesy of Dr Z. R. 
Dai). 

ones uses a general approach in which an average 
crystal structure is introduced (Takagi, 1958; Cowley, 
1995). The crystal potential V(r, t) is written in the 
form 

V(r, t) = V0(r ) + A V(r, t), (1) 

where V0(r ) = (V(r, t))t, is the crystal potential for the 
average lattice, defined to be time independent and 
periodic, ( )ts indicates the statistical time and structure 
average and A V(r) represents the deviation from the 
average lattice with (AV(r, t))ts = 0, which is non- 
periodic and time dependent (for TDS). The statistical 
structure average ( ) ,  is introduced to take into account 
the SRO in the crystal structure. The statistical time 
average is to consider the variation in thermal vibration 
configurations of crystal lattices. The physical picture 
contained in (1) is schematically shown in Fig. 3 using a 
one-dimensional potential model, where only SRO is 
considered. For a crystal containing point vacancies, the 
crystal potential can be separated into a periodic 
component (Vo) and a deviation term A V (Fig. 3a). 
Similar mathematical treatment can be adopted for a 
binary crystal in which atom substitutions between the A 
and B types of atom can occur (Fig. 3b). The separation 
of V 0 from ,4 V has a powerful application in describing 
crystals containing point defects using the Patterson 
function (Cowley, 1995). 

v(x) 

Vo = <V(x)> 

 J J JU J JVUVVVU 
V U V V V V V V V V 

(a) 

A B V(x) 

Vo = <V(x)> ?? J Jk]UUUU?U? 
AV(x) 

(b) 
Fig. 3. One-dimensional representation of crystal potential V, the 

structurally averaged potential V 0 -- (V) and the deviation potential 
A V = V - V 0 for (a) a crystal containing point vacancies and (b) a 
binary alloy with atom substitutions between the A and B types of 
atom. Vo is a periodic function but ,5 V is not. 
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In high-energy electron scattering, the ' frozen' lattice 
model is assumed in describing TDS. Since the 
interaction time between an incident electron with a 
thin specimen is much shorter than the vibration period 
of an atom, the crystal atoms are seen as stationary by 
the incident electron. An electron diffraction pattern or 
image is considered to be a statistical average over the 
scattering intensities for many instantaneous pictures of 
the displaced atoms (Hall & Hirsh, 1965). The first 
objective in our theory is to find the scattered electron 
wave function for a given frozen lattice configuration, 
then a statistical time average is made on the electron 
diffraction intensities for a vast number of different 
thermal vibration configurations. For simplicity, we 
start from the time-independent Schr6dinger equation 
with relativistic correction (Humphreys, 1979; Spence, 
1988), 

[ - ( h 2 / 2 m o ) V 2 - e v V o - e y A V - E ] t P  = 0 ,  (2) 

where E = eU0[1 + eUo/2moc2], Uo is the accelerating 
voltage of the electron microscope, the relativistic 
factor y = (1 - v2/c2) -~/2 and v is the electron velocity. 
For diffraction calculation, the Green-function theory is 
the most convenient choice (Kainuma, Kashiwase & 
Kogiso, 1976; Wang & Li, 1995). If the AV term is 
shifted to the right-hand side, (2) is converted into an 
integral equation with the use of Green's function 
G(r, rl): 

Lp(r, t) = q/o(Ko, r ) +  f drlG(r ,  rl)[eyA V(r 1, t)lP(rl, t)], 

(3) 
where G is the solution of 

[ - (h  2/2mo)V 2 - evV o - E]G(r, r l)  = 3 ( r -  r l)  (4) 

and !Po(K o, r) is the elastic wave scattered by the 
periodic time-independent average potential V o due to 
an incident plane wave with wave vector K o and 
satisfies 

[ - (h  2/2mo)V 2 - evVo - E]q/0 = 0. (5) 

Equation (5) can be solved using the Bloch-wave or 
multislice theory. It must be pointed out that the time 
variable in (3) represents the instantaneous lattice 
configuration of the crystal due to thermal vibration. 

When the observation point is at infinity, the 
observed diffraction pattern is the squared modulus of 
the Fourier transform (FT) of ~P(r). In (3), the 
diffraction amplitude due to the periodic potential V o 
is calculated from the first term: 

4~0(Ub) = f dx f dy exp[-2zri(ux x +Uyy)] tl/o(K o, x, y, oo) 

= FT[hV0(Ko, x, y, oo)1, (6) 

where Ub = (ux, uy) is a two-dimensional reciprocal- 
space vector perpendicular or nearly perpendicular to 
the incident-beam direction (see Fig. 4a). ~0(Ub) is 
responsible for the intensity of the Bragg reflections. 

The diffraction due to the non-periodic potential A V is 
represented by 

Af~(ub) = f drlGr(u b, oo, rl)[evA V(rl, t)!P(rl, t)], (7) 

where G(u b, r l)  = FT[G(x, y, z = c~, r l)  ]. A~(Ub) is 
responsible for the diffuse scattering observed in the 
electron diffraction pattern. The diffraction pattern is 
calculated under the first-order diffuse scattering 
approximation: q/(r 1, t) is replaced by ~P0(Ko, r l)  in 
(7) to give 

q/(r, t) "-- q/0(Ko, r) + f dr lG(r ,  rl)  

× [eyA V(rl, t)lPo(Ko, r l)  ]. (8a) 

This approximation holds if the diffuse scattering is 
much weaker than the Bragg reflections. However, as 
will be shown in §5, the high-order diffuse scattering 
terms dropped by this approximation can be recovered 
by a correction potential to enable (8a) to be applied to 
cases where the disorder is high. This result also applies 
to the discussions illustrated below. The diffuse 
scattering intensity is calculated by 

lo(Ub) = (IA~(Ub)I2),~ 

= e2~ f dr1 f dr2(~(u b, rl)G*(u b, r2) 

x (AV(r 1, t)AV*(r2, t))ts 

x q%(K o, r l ) ~ ( K o ,  r2), (8b) 

where the contributions made by different instantaneous 
crystal lattices due to thermal vibrations is represented 
by a time average ( )t; the structure average ( )s is to 
statistically average on imperfections introduced by 
SRO. The most important advantage of this equation is 
that the time and structure average can be performed 
analytically before numerical calculations. We now 
consider the calculation of G(Ub, rl). 

From the reciprocity theorem, G(x, y, z = ~x~, rl)  = 
G(rl ,x ,y ,z  = c~), provided there is no absorption. 
This relation means that the wave observed at z = c~ 
when a point source is placed at r I in the specimen is the 
same as the wave observed at r 1 (in the specimen) when 
a point source is placed at z = ~ (the image plane). In 
practice, when a point source is placed at z = cx~, the 
spherical wave of the source that falls on the crystal 
surface is equivalent to a plane wave, thus, 
G(r~, x, y, z = e~) is equivalent to the solution of the 
Schr6dinger equation for an incident plane wave. This 
relation can be proved mathematically (Dudarev, Peng 
& Whelan, 1993) as 

G(u b, r 1) = Azq/o(-K o - U b ,  rl),  (9) 

where q/0(-K, r l )  is the solution of the Schr6dinger 
equation [equation (5), which will be replaced by (48) 
with the inclusion of the absorption effect] for an 
incident plane wave vector ( - K )  (K = K o + Ub) and 
Az = _[int o exp(2~riKzz)](rrh2 Kz)- 1. The negative sign of 
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the wave vector means that the electron strikes the 
crystal along the negative z-axis direction, as schema- 
tically shown in Fig. 4(b).Equation (9) is a key relation, 
which makes the calculation of the Green function so 
convenient. The elastic scattering wave ~0( -K,  rl) can 
be obtained using conventional dynamical approaches, 
such as the Bethe theory. Thus, 

In(Ub) = D f d r  I fdr2q/o(-Ko-U b, r l ) ~ ( - K o - u  b, r2) 

x (AV(rl, t)AV*(r2, t))ts 
x q/o(Ko, rl)q/~(Ko, r2) (10) 

with D = e2y2mo[2zr2h2Ecos2~oo]-I , where go 0 is the 
angle between K and the z axis. In general, 
(AV(rl,  t)AV*(r2, t))ts is written into a Fourier 
transform form: 

(A V(rl, t)A V*(r2, t)), 

= f dQ f dQ' exp[Zzri(r I • Q - r 2 • Q')] S(Q, Q'), 

(11) 

where S(Q, Q') is defined as the diffuse scattering 
dynamic form factor. Thus, (10) is rewritten as 

lo(Ub) = D f dQ f dQ'S(Q, Q') 

x {FT[q/~(-K o - Ub, rl)~(Ko, r~)]lo}* 

× {FT[q/~(-Ko-  ub, rE)q/~(Ko, r2)]lo,}, (12) 

where the subscripts Q and Q' mean that the variables of 
the transformed functions are Q and Q', respectively. 
Since q/0 can be calculated using the existing elastic 
scattering theories for the average periodic crystal 
potential V o, the key step in the diffuse scattering 
calculation is to find the S(Q, Q') function. The role 
played by S(Q, Q') in diffuse scattering is analogous to 
that played by the crystal potential in elastic scattering. 

Y x 

- K , ,  Ko+  ub )  

• 

(a) (b) 

Fig. 4. (a) A coordinate system used to describe transmission electron 
diffraction by a thin slab crystal. The incident beam is nearly 
parallel to the z axis, the b = xy plane is the surface of the crystal 
slab. K o is parallel or nearly parallel to the z axis. (b) A schematic 
diagram showing the calculation of q/o(-K, rl)  according to the 
reciprocity theorem. 

Equation (12) is a general equation, which has been 
applied to calculate the diffuse scattering produced by 
atomic vibrations and point vacancies in a growing 
surface in reflection high-energy electron diffraction 
(Wang, 1996a). In this paper, this equation is applied to 
calculate the diffraction of transmitted electrons. We 
now consider the diffraction of an incident plane wave. 
An electron wave function in a periodically structured 
lattice described by the average potential V 0 can be 
obtained using the Bethe theory. In the Bloch-wave 
representation, the elastic scattering wave of incident 
wave vector K is a linear superposition of Bloch waves 
Bi(K, r), 

~0(K, r ) =  ~ - ~ u i ( K ) B i ( K , r ) ,  (13a) 
i 

where 

Bi(K, r) = ~ C~gi)(K)exp[2rri(K + g). r + 2rtiviz ], 
g 

(13b1 

cti are the superposition coefficients determined by the 
boundary conditions, and C~g i) and v i are the Bloch-wave 
coefficients and eigenvalue of the ith Bloch wave 
Bi(K, r), respectively. For a periodically structured 
crystal, the crystal potential can be written in a Fourier 
series, thus, (5) is converted into a set of coupled 
algebra equations (Humphreys, 1979; Spence & Zuo, 
1992) by 

[2KSg - 2 ( K  z + gz)vlCg + (2Vmoe/h 2) ~_~ Vg_hC h _~ O, 
h 

(14) 

where V s are the Fourier coefficients of the average 
crystal potential V 0 and Sg is the excitation error of the g 
reflection. Equation (14) can be solved using the matrix 
diagonalization technique. For a thin parallel-sided 
crystal slab, the t~ i coefficients are determined by the 
boundary conditions ot i = C~ )* if the absorption 
potential is zero and a~ = ~ if the absorption effect 
is included, where C')2 are the elements of the 
first column of the inverse of the matrix whose elements 
are C<g i) (row i and column g). The Bloch-wave theory 
has shown remarkable success in describing transmis- 
sion electron diffraction. The theory can be applied to 
precisely calculate the rocking curves obtained in 
convergent-beam electron diffraction, making it possi- 
ble to determine the bonding-charge distribution in 
crystalline specimens (Zuo, Spence & O'Keefe, 1988). 
The Fortran program developed by Spence & Zuo 
(1992) solves (14) numerically for any crystallographic 
system. 

For diffuse scattering, substituting (13) into (12) and 
performing the integrals gives the TDS intensity at Ub in 
reciprocal space: 
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ID(Ub) = D ~ ~ ~ E ~ ~ ~ ~ {Bloch waves} 
i j i ' j '  g h g' h' 

x S(Q, Q') {thickness}, 

where 

(15a) 

{Bloch waves} = oti(-K)a~(-K)cti,(Ko)Ctj*,(Ko) 

x C~g0(-K)Chh )* (-K)~')(Ko)Cff)*(Ko),  

(15b) 

{thickness} 

{exp[2zri(Qz + gz + g'z + vi + vi')d] - 1} 

4zr2(Qz + gz + g'z + Pi + Pi') 
{exp[-2rri(Q~z + h z + h' z + vj + vl)d ] - 1} 

(Q'z +hz +h'z + vj + vj,) 

(15c) 

Qb = Ub -- gb -- g~, (15d) 

! ! 

Q b  : Ub - -  h b  - -  h b ,  ( 1 5 e )  

K -- K o + Ub, g and h are reciprocal-lattice vectors, the 
subscript b 's  represent the components parallel to the xy 
plane and d is the specimen thickness. The sums of i,j, i' 
and j '  are over all the Bloch waves and the sums of g, h, 
g' and h' are over all the reciprocal-lattice vectors. In 
(15a), the {Bloch waves} term characterizes the 
dynamical diffraction before and after diffuse scatter- 
ing; S is responsible for the electron angular distribution 
due to diffuse scattering alone. Equations (15d) and 
(15e) are the results of momentum conservation parallel 
to the surface of the thin slab. The {Bloch waves} term 
will be modified if the absorption potential is included 
[see (57)]. Based on these discussions, diffuse scattering 
due to both TDS and SRO of defects can be calculated 
using the available theoretical approaches, provided the 
dynamic form factor S(Q, Q') is known. 

4. Calculations of dynamic form factors 

4.1. SRO of  point vacancies 

The distribution of point vacancies varies from cell to 
cell. Therefore, a statistical structural average on 
different cell configurations must be made in the 
calculation. For simplicity, we consider a case in 
which the crystal structure is dominated by a periodic 
lattice but with some point vacancies (Fig. 5). The 
positions of the atoms are assumed not to be affected by 
the point vacancies. Since each atom is also vibrating 
around its equilibrium position, the instantaneous 
position of the r th atom site in the crystal is 
r'~ = r~ + U,~(t), where U~ is the instantaneous displace- 
ment of the atom from its equilibrium position r~. The 
calculation can be conveniently performed if the crystal 

potential is expressed as a Fourier transform of the 
scattering factors [f~(x)] : 

V(r, t) = ~ or, V,(r - r'~) 
g 

= ~ f dxexp[2rri(r - r~ - U~)- ~] a,f[(x) ,  (16) 
K 

with operator t r , - - 1  if the site is occupied and 
cr,(x) = 0 if the site is vacant. The structure average is 
to effectively reduce the scattering power of each atom, 
thus, 

V0(r) = X0 ~ f dx exp[2rri(r - r , ) .  ~] fe(x) exp [ -  W~(~)], 
/ (  

(17) 

where Xo = (tr,)~ = 1 - Xv and Xv is the probability that 
a site is vacant, i.e. the average density of vacancies in 
the crystal; Xo can be understood as the probability that 
a site is filled by an atom; a relation of (exp(X)), = 
exP(½(X2)t)_ with (X)t = 0  was used and W~(~)= 
2r r2( (U.  x)z) is the Debye-Waller  factor. Thus, the 
deviation potential is 

,4 V(rl, t) -- ~ f dx exp[2rri(r 1 - r~). x] f [ (x)  
K 

x {or, exp(-2rriU,~ • x) - X0 exp[-W,(x)]}. 

(18) 

where 

F~e(x, u) = 2n2((U~ • x)(Ue • u)), (21) 

is defined as a correlation function that is related to the 
coupling between atom vibrations (Wang, 1995b). 
Equation (20) includes not only the diffuse scattering 
produced by point vacancies but also that due to TDS. 
The structure and time averages can be performed 
individually. 

Based on the harmonic oscillators and adiabatic 
approximations, in which all the atoms are assumed to 
interact with harmonic forces and the crystal electrons 
move as though the ions were fixed in their instan- 
taneous positions, the correlation function F,~ e (x, u) has 

We now calculate the function 

('4 V(rz, t)A V*(r:, t))t, 

= ~ ~ f dx f du exp[2zti(r~ - r , ) .  x] 
r e 

× exp[-2rri(r2 - r e ) .  u]Y[('O[f~,(u)]* 

× {(a/re)s(exp[2zri(U e • u - U,~. x)])t 

- X~ e x p [ - W , ( x ) -  We(u)]l. (19) 

In comparison to (11), the dynamic form factor is 

S(~, u) = ~ ~ exp[2zri(re, u - r,~. ~)] f :(x)[  f~(u)]* 
r e 

× e x p [ - W Z x ) -  We(u)] 

x {(o',o" e )s exp[2F, e(~, u)] - X~}, (20) 
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been calculated analytically using the Warren (1990) 
approximation (Wang, 1995a,b). In this approximation, 
all vibration waves can be considered as either pure 
longitudinal or pure transverse; the velocities of all 
longitudinal waves are replaced by an average 
longitudinal velocity and the velocities of all transverse 
waves by an average transverse velocity; each average 
velocity is considered to be a constant independent of 
the phonon wave vector q, the Brillouin zone is replaced 
by a sphere of radius q,,, whose volume is equal to that 
of the Brillouin zone. The result gives a criterion for 
determining the coherent property of the diffuse 
scattering waves generated within a local region. In 
general, the coherent length is approximately 1 nm, 
about 4-5 interatomic distances. If two atoms are 
separated by more than 1 nm, the TDS waves generated 
from the two atom sites are incoherent. 

We now consider the statistical structure average of 
(0.,0.,,)~. With the Flinn symbols (Flinn, 1956), 

80.,~ = 0-,, - Xo = X,, - o~,, (22) 

where 0.~ is a vacancy operator with 0.~ = 0 if the site is 
occupied and o~ = 1 if the site is vacant, then 

(0..0-,,.). = ([80-,, + Xo][80-e + Xo]). 

= (80.K80.,,,), + X 2. (23) 

If the interatomic distance between the K and r '  atoms is 
denoted as r,~, = r ,  - r e, (80-,~80-,e)~ is directly related 
to the Cowley short-range order (SRO) parameters 
(Cowley, 1950) defined by 

ot,~e = (80-,~80-,e ) . /  XoX,, (24) 
with tx~ -- 1. In kinematical scattering theory, the SRO 
parameters are the Fourier coefficients of the diffuse 
scattering intensity distribution (De Ridder, Van 
Tendeloo & Amelinckx, 1976). This is the principle 
of using the experimentally measured I n to calculate 
SRO parameters (Dai, Wang & Liu, 1996). To show the 
physical meaning of SRO parameters, we now examine 
the relationship between (80.,~80-,e)~ and the correlation 
probability. From (22), the probability of finding a 
vacancy at a given distance r,,, (K ~ r ' )  from another 
vacancy at site K is 

Fig. 5. A schematic model showing point vacancies in a crystal. The 
shadowed spheres are atoms and the open circles represent point 
vacancies. 

P ~  = (0.~0.~ ).  = ( (xv  - 80. . ) (x~ - 8o,~)).  

= X2v + (8,. .8,. , , . ) .  

= x2~ + XoX~,~,,,e, (25) 

where the first term X 2 represents the probability of two 
vacancies distributed at K and r '  if there is no correlation 
( i .e .  random distribution). Each vacancy site is a point 
defect (see Fig. 3a). By the same token, the probability 
of finding an atom at a given distance (r~ - re)  from an 
atom at site r '  is 

= ( ~ e ) =  X 2 + XoX,,otK,e. (26) 
The probability of finding a vacancy at a given distance 
(r~ - re)  from another atom at site r '  is 

e;~ = ( 0 . ~ )  = ((x,, - 80.,J(Xo + 8o-,,,)). 

= X ~ X o -  (80-k80-k,). 

= X,,XO -- XOXvet,.e, (27) 
where the first term X,,Xo is the probability of finding a 
vacancy at site K and an atom at site r '  if there is no 
preferred distribution. The whole set of correlation 
parameters, for all numbers of atoms, can be considered 
to specify the state of order of the system. The values of 
cr~, specify the degree to which the neighbors of one 
sort of atom tend to be preferably of the same sort or of 
the opposite sort. If cr~e is positive, pv,,~ > X 2, ~ > X 2, 
the vacancies tend to clump together with vacancies and 
atoms tend to clump with atoms. If c~,, e is negative, 
pv~  < X 2 ,  ~ > X v X o ,  the vacancies tend to clump 
together with atoms. Therefore, the measurement of 
c~,~, can reflect the short-range order in the considered 
system. The decrease of c~,e with the increase of rK~, 
gives the range of order. 

The dynamic form factor given in (20) can be written 
as  

S(Q, Q') = ~ ~ exp[2zri(r~,. Q' - r~. Q)] f : (Q)  

x [ f,5(Q')]* e x p [ - W ~ ( Q ) -  We(Q')] 

x { x0x~cr,~, exp[2F, e(Q, Q')] 

+ x2{exp[2F,~,(Q, Q ' ) ] -  1}}. (28) 

This equation covers the diffuse scattering produced by 
thermal vibration and SRO of point vacancies. The first 
term in { } is due to point vacancies and the second term 
is due to TDS. The key in the calculation of (28) is the 
SRO parameters. In the case of SRO in ZrO 2 (Fig. 2), 
the cr,~, parameters have been calculated from the 
experimental diffraction patterns based on kinematical 
electron diffraction theory (Dai, Wang & Liu, 1996). 
These parameters can be used in dynamical calculation 
to quantitatively fit the experimental data. 

If there is no order in the distribution of point 
vacancies, i .e .  or,,,, = 8Ke, and with the use of the 
Einstein model, (28) is approximated as 
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S(Q,  Q') = ~ exp[2zrir~.  (Q' - Q)] f f ( Q ) [ f f ( Q ' ) ] *  
K 

A B (33) 

x {X0 exp[-W~(Q - Q')] 

- x~ exp [ -  W~(Q) - W,~(Q')]}. 

with (3,r,)s = 0 and XA + XB = 1. The probability is 
(29) given by 

This is just the result obtained by Dudarev, Vvedensky 
& Whelan (1993). Equation (29) can be further 
simplified if the position of the ~ h  atom is a sum of 
the unit-cell position R n and the relative position r(fl) of 
the atom with respect to the origin of the unit cell, i.e. 
r .  = Rn + r(/~), 

S(Q, Q') = ~ 8 ( Q ' -  Q - g/')~ E exp[2:rir(/5). ~'] 
,¢' I ,  .a 

x f ; (Q)[  f ; ( Q  + g")]* {Xo e xp [ -  W,(g")] 

- X2 exp[ -W,(Q)  - W,(Q + g")]}}, (30) 

where an identity y ~  exp[2rriR, • u] = ~-~g,, 8(u - g") 
for a periodic structure was used and g" are reciprocal- 
lattice vectors. 

4.2. Atom substitution in a binary alloy system 

A classical example in SRO is a simple binary 
alloy solution, composed o f  A and B types of 
atoms with fractional proportions XA and Xs, 
such as Cu3Au and CuAu (Fig. 6). These alloys 
usually have a simple cubic structure. In this 
section, we calculate the dynamic form factor for 
this system where the atom substitution can 
occur. For simplicity, we consider a crystal 
containing two types of atom. The extension to 
systems with more than two types of atom 
follows with elaboration of the algebra but little 
difference in conception. The ordering in the 
crystal is defined by order parameters that define 
correlation between the occupancy of sites, 
which, for example, is the probability P~ff of 
finding a B atom (at site K') at a given position 
(r e - r ' , )  from an A atom at site K. To describe 
the potential distribution in this system, we first 
introduce the occupation operators (Flinn, 1956; 
Cowley, 1995): 

p ~  a B - (&r~&r~,) s. (34a) = (cr,ae) = XaXB 

Similarly, 

P • x •  - -  A A (o',,.o',,.,) = X~ + (3o',,.8o',,,),. (34b) 

The Cowley SRO parameters are defined by 

u,o,, = (8aK&r,, ) , /XAXB. (35) 

If c~e is positive, ~ > X 2, P~ff < XAXB, the same 
types of atom tend to clump together. If cr~, is negative, 

< X 2, P~ff > Xa XB, the A atoms tend to clump with 
B atoms. 

After defining these SRO parameters, we now 
consider the crystal potential distribution with the 
presence of lattice substitution between the A and 
B atoms. If the thermal vibrations of crystal 
atoms are also considered, the instantaneous 
position of the ~ h  atom in the crystal is 
r ' = r ~ + U , ( t ) ,  where U~ is the instantaneous 
displacement of the atom from its equilibrium 
position r~. We assume that the lattice position 
r~ is not affected by the atom substitution, i.e. 
lattice relaxation caused by the atom size effect 
is ignored. The crystal potential may be written 
a s  

V(r, t) a A s = y~[cr~ VA(r - r~ - U~) + or. Vs(r - r .  - U.S)] 
K 

= ~ f dx exp[2zri(r - r~). x] 
/( 

A e • A x [ t r J ,~ (¢ )exp( -2mU~.  ¢) 
B e • B + a J ~ ( x )  e x p ( - 2 m U ~  • x)], (36) 

where U~ (or U~) stands for the vibration displacement 
of the A (or B atom) located at site K. The time and 
structure averages are to effectively reduce the scatter- 
ing power of each atom, thus, 

A f 1 for anA atom at site r 
a~ - "1. 0 for a B atom at site tc 

(3 la)  

and 

B f 1 for a B atom at site r 
or, -- '1. 0 for an A atom at site K. (3 l b) 

These parameters are interconnected and we may 
replace both by a single parameter 

f XB for anA atom at site r 
(32) / --XA for a B atom at site Jc. 

F i g .  6. A s c h e m a t i c  m o d e l  s h o w i n g  a t o m  subs t i tu t ion  in a b i n a r y  
Thus, c rys ta l .  
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W0(r ) = (W(r, t))ts 

= ~ f d* exp[2zr/(r - r~). ~] 
K 

x {zaf,~(x) exp[ -W:  (x)] + xsf;('~) exp[-W~(x)]}, 

(37) 

where Wff(x) [or W~s(~)] stands for the Debye-Waller 
factor of the A (or B) atom located at site r. The 
deviation potential is 

A V(rl, t) = ~ f dx exp[2zri(r 1 - r~). x] 
K 

(f~(x){cr~ exp(-EzriU~ • x) X 

- XA exp[--W,A(~)]} 

+f;(~){O'~ exp(-2~riU~ • ~) 

- xnexp[-Wn~(~)]}).  (38) 

We now calculate the function 

(A V(rl, t)A V*(r 2, t))ts 

= ~ y]~ f d~ f du exp[Zrri(r, - r . ) .  ,] 
e 

x exp[--2rri(r 2 -- r e ) .  u] 

x ((f.~(,){o': exp(-2zr iU,  a-  %) -  XA exp[-W:( , ) ]}  

• B +f~(~){a~ x ) -  XB exp[ -  w~'(x)]}) exp(-2zr iU,  s .  

([ f,~(u)]*{a~, exp(2zriU~,, u)-XA exp[ -  W:(u)]} × 

+ [ f~(u)]*{O~e exp(2rriU~, u) 

- XB exp[-WeS(u)]})), /  (39) 

The statistical structure average can be performed using 
following relations: 

A A 
(a,(ae)s = ((XA + `Sa~)(XA + `sae))s 

= X~ + (`Sa',(`Sa'e-'> = X~ + X ~ X s % e ,  (40a) 

B A 
( a , a e ) ,  = ((xB - `S~)(xA + &re)), 

= XA Xs - ( ` s ~ & r e )  = XA Xs - XA X s % e ,  (40b) 

A B (,:r,~o-,,.), = ( (XA + ` so . ) ( xB  - `sO'e)), 

= XA Xs -- (&r,fiCre) = XA Xs -- XA Xs%e (40c) 

and 

B B (o ' . , : r , , . ) ,  = ( ( x n  - ` so , j ( xB  - ,SO'e)), 

= x~ + (`sa.`sae) = x~ + xaxsa.e. ( 4 0 d )  

In reference to the dynamic form factor defined in (11), 
one has 

S(~, u) = ~ ~ exp[-2zri(r~ • • - r e • u)] 
g e 

(f~(~)[ f~(u)]* exp[-Wfl(T)- W~(u)] X 

x {(X 2 + XAXn%e)exp[2F~( ' t ,  u ) ] -  X 2 } 

+f~(~)[ f~(u)]* e x p [ - W ~ ( ~ ) -  W~(u)] 

exp[2F~¢ (z, u)] - XAXn} x {XAXB(1 - %e)  BA 

+f/~(x)[ f~(u)]* exp[-W:(x)- Wen(u)] 

%~) exp[2F~e (x, u)] - gAgS} x {XAXs(1 - An 

+f~( , ) [  f~(u)]* exp[- -W,S( , ) -  Wen(u)] 

" ) x {(X~ + XAXsOt,~e)exp[2F:~e( ~, u ) ] -  X2s} , 

(41) 

where F~(~,  u) = 2n "2 ([(U~. ~)(U~. u)]) t is the correla- 
tion function between a and b atoms located at sites x 
and x', respectively, and it has been calculated using the 
Warren approximation (Wang, 19953). 

If the site substitution is random, so that %e = `s~e, 
and if the Einstein model is also used for thermal 
vibration, one has 

S(z, u) = ~ exp[-2zr i r , .  (~ - u)] 
K 

(f~(*)[f,~(U)]*{XA exp[-- W~(~ - u)] X 

- X,~ e x p [ - W ~ ( ~ ) -  W,a(u)]} 

- XAxB{f~(~)[ f:~(u)]* +f~(~)[f~(u)]*} 
x exp[-W,a(~)- W:(u)] 

+ f~('O[ f~(u)]* { Xs exp[-- W,S ('c -- u)] 

-- X~ exp[-W:(~)- W,S(u)]} 1 • 
\ 

(42) 

Using the same procedure as for deriving (30), (42) can 
be rewritten as 

s(~. u) = ~E ~(~ - u - g") [ ~E exp[2yr/r(fl). g"] 
g" L 

x (f~( 'O[f~(ull*{xaexp[-W'~(g")] 

- X~ e x p [ - W ; ( ~ ) -  W;(u)]} 
e ¢ * 

-- XAzsIf~(%)[ f,~(U)] -l-f/~(*)[f~(u)]*} 

× exp[-Wff(~)- Wg(u)] +f~(~)[f~(u)]* 

× {XB exp[-Wff(g")] 

- x2sexp[-Wf f (%)-  Wff(u)]})].  (43) 

To check the consistency of (42) with other results, we 
now consider three extreme cases. 

Case 1: If there is no atom substitution, so that 
X s = 0 a n d x a = l ,  
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S(x, u) = ~ exp[-2Jrir,~. (x - u)] fJ(x)[ fJ(u)]* 
K 

x (exp[-W~(x - u)] 

- exp[-WffO:) - W~(u)]) (44) 

This is just the dynamic form factor for TDS in the 
Einstein model. 

Case 2: If there were no atom vibration at T - 0, so 
that W~ = W~ = 0, 

S(~, u) = XAXa ~ 8(~ - u - g")]~ ~ exp[2Jrir(/~), g"] 
g" I, 

x [ f,~(~) -f~(~)][ f,~(u) -f~(u)]* }. (45) 

Thus, the diffuse scattering is caused by the differ- 
ence in scattering factors of the A and B types of 
atom. 

Case 3: If the A and B atoms are the same 
element, replacing B and A (and X,4 = ZB = 1/2) 
makes (42) become 

S(x, u) = ~ exp[-2~rir,~. (x - u)] f,~(x)[f~(u)]* 
I¢ 

x {exp[-W:(x - u)] 

- exp[-W:(x)  - W:(u)]}. (46) 

This equation is identical to (44) for TDS and the SRO 
effect disappears, just as expected. 

It must be pointed out that the calculation of 
dynamic form factor in this section was per- 
formed with the important assumption that the 
equilibrium position vectors r ,  were the same as 
for a perfect crystal without defects, i.e. the 
lattice relaxation caused by point defects was 
ignored. The relaxation effect can be reasonably 
taken into account using the results of Hall 
(1965). If there is no correlation between point 
defects, the relaxation effect is equivalent to 
introducing a similar quantity to the Debye- 
Waller factor that depends on the average 
displacement of an atom as a result of lattice 
relaxation. Thus, the Debye-Waller factor W,~(Q) 
is replaced by [W~(Q)+ wff)(Q)], where w~d)(Q)= 
2zr2Q2(v 2) and (v:) is the mean square displacement 
produced by lattice relaxation, the calculation of which 
can be made based on the random-walk model. 

5. The 'absorption potential' and multiple diffuse 
scattering 

Since our calculation is made based on the first-order 
diffuse scattering approximation, i.e. !//(rl,t ) is 
replaced by !P0(K o, r l) in (3), which is 

ff'(r, t) _~ g/0(Ko, r) 
+ f drlG(r,  rl)[eyAV(rl,  t)~o(Ko, rl)], (47) 

where the higher-order diffuse scattering terms are 
dropped. This approximation fails if the specimen 
is thick and/or the disorder is high. We now 
modify the solution ~0 of (5) to compensate 
these high-order diffuse scattering terms so that 
the theory can be expanded to cases unrestricted 
by the first-order diffuse scattering approximation. 
A correction potential V ~i) is symbolically intro- 
duced, 

[-(h2 /2mo) V 2 - ey  V o - ey  V (i) - E]~ o = 0. (48) 

The potential V (i) is chosen so that (47) and (48) exactly 
satisfy the original Schr6dinger equation (2) and the 
result is 

[V(i)ff'o] = ev  f drl[G(r, r l)A V(r, t )A V(rl, t) 

x IP0(K o, rl) ]. (49) 

We now prove that the potential V (i) given by 
(49) can be applied to recover the high-order 
diffuse scattering terms dropped when ~(r  l, t) 
is replaced by q/o(Ko, r l) in deriving (8a) 
under the first-order diffuse scattering approxi- 
mation. Starting from the integral form of (48) 
and using Green's function and iterative 
calculation, one can expand the elastic wave 
as 

%(Ko,r) = q/o°)(K o, r) 

+ e y  f drl G(r, rl)[V(i)(rl)~o(Ko, r l )  ] 

= q~(o°)(Ko, r) + (ev) 2 f drlG(r ,  rl) 

xfdr2[G(rl,  r2)AV(r I , t)AV(r 2, t)q/o(]Ko, r2)] 

= ff'~o°)(Ko, r) + ( ev )2 fd r~ fd r2G(r ,  r~)G(r~, r2) 

× A V(rl, t)A V(r2, t)q/(o°)(Ko, r2) + (ey) 4 

x f dr~ f dr  2 f dr 3 f dr4G(r, r~)G(r 1, r2) 

× G(r2, r3)G(r  3, r4)A V(rl,  t)A V(r2, t) 

× A V(r3, t)A V(r4, t)ff/(o°)(Ko, r4) + . . . .  

(50) 

where q/<o °) is the Bragg scattered wave due to the 
average periodic lattice at the absence of V (i) (e.g. no 
absorption): 

[ - (h  2/2mo)v 2 - evVo - E]q/(o °) = 0. (51) 

This equation can be solved using conventional 
dynamic electron diffraction theory. Substitution 
of (50) into (8a) gives the total scattered wave: 
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LP(r, t) : q/(0 °)(K o, r) 

+ (eF) f drl G(r, rl) A V(rl, t)q/0°)(Ko, rl) 

+ (ev) 2 f drl f dr2G(r, rl)G(rl,  r2) 

× A V(rl, t)A V(r2, t)q/~o°)(Ko, r2) 

+ (ev) 3 f dr~ f dr2 f dr3G(r, r ,)G(rl ,  r2) 

x G(r2, r3)AV(rl, t)AV(r2, t) 

× A V(r3, t)q/(o°)(Ko, r3) 

+ (ey)4f dr 1 f dr2 f dr3 f dr4G(r, rl)G(rl,  r2) 

× G(r 2, r3)G(r 3, r4)A V(r 1 , t)A V(r 2, t) 

× A V(r3, t)A V(r4,/)q/(o°)(Ko, r4) + . . . .  (52) 

This Born series is the exact solution of (2) without 
making any approximation. The third term in (52) is 
taken as an example to show its physical meaning, as 
schematically shown in Fig. 3. The Bragg scattered 
wave is diffusely scattered at r 2 by A V(r 2, t). The 
diffusely scattered wave is elastically scattered by the 
crystal lattice while propagating from r 2 to r l 
[G(r 1, r2) ], then, the second-order diffuse scattering 
occurs at r 1 [AV(r l, t)]. Finally, the double diffusely 
scattered wave exits the crystal at r after elastic 
scattering when propagating from r I to r [G(r, rl) ]. 
The integrals over r I and r 2 sum over the contributions 
made by all of the possible scattering sources in the 
crystal. 

Therefore, the multiple diffusely scattered waves are 
comprehensively included in the calculation of (8a) if 
the optical potential V (0 given by (49) is introduced in 
the calculation of ~0 [(48)]. This is a key conclusion, 
which means that, by introducing a proper form of the 
optical potential, the multiple diffuse scattering terms 
are automatically included in the calculation using (8a), 
although it was derived for the first-order diffuse 
scattering. This result has a strong impact on the 
conventional diffuse scattering theories developed based 
on the first-order diffuse scattering. Thus, an introduc- 
tion of a complex potential V (i) in the calculation of the 
elastic wave makes the existing theories available for 
calculating the TDS and SRO including all orders of 
effects. This conclusion is universal for a time- 
independent system because no assumption and approxi- 
mation was made in the proof. 

We now modify (15) to make this Bloch-wave theory 
suitable for calculations beyond the restriction of the 
first-order diffuse scattering. In practical calculations, a 
time and structure average is made over (49): 

[V(/)!i[/0] : ev f drl[G(r, rl) 

× (AV(r,t)AV(rl,t))tstPo(Ko, rt)]. (53) 

A detailed method for the calculation of V (i) for a 
general case is given elsewhere (Wang, 1996b, 1997). 
For simple illustrational purposes, we make the 

following approximation. To proceed with the calcula- 
tion of (53), one ignores thediffraction effect of the 
crystal so that the Green function is replaced by its free- 
space form (Yoshioka, 1957): 

G0(r, rl) --~ (2mo/h2)[exp(2rdKIr- r l l ) / 4 r r l r -  rll]. 

(54) 

With the dynamic form factor introduced in (11), (53) 
becomes 

[v(i)I]J0] ~ (moeV/2:rh 2) f dQ f dQ'S(Q, Q') 

x f drl{[exp(2rriKIr - r l l) /Ir  - rll ] 

x exp[2rri(r. Q - r 1 • Q')] ~0(Ko, rl)}. (55) 

From (55), the correction potential V (i) is a complex 
function, its imaginary component denotes the 'absorp- 
tion' effect. More importantly, this potential is not a 
local function because V (i) cannot be separated from 
wave function q/0- The most accurate representation of 
this non-local imaginary component is to use its Fourier 
coefficients given in a matrix form; the (g, h) matrix 
elements are given by (Yoshioka, 1957; Yoshioka & 
Kainuma, 1962; Wang, 1995a) 

( i)  , .~  _(emoV/2zr2h 2 Vc){ f dr(u) 
h 

x [S(kg - u, k h - u)/(K02 - u2)] 

+ i(zr/2Ko).f dot(u) S(kg - u, k h - u) }, (56) 

where Vc is the volume of the crystal, the integral r(u) is 
over all reciprocal space u except a spherical shell 
defined by lul = Ko and the integral or(u) is on the 
surface of the Ewald sphere defined by lul = K0, with 
kg_~K o + g  and k h_~K o + h .  The dynamic form 
factor S is the most important function in this 
calculation. 

If the Green function G in (52) is replaced by its form 
in free space (Go), this means that the dynamical Bragg 
diffraction of the electrons is ignored after each order of 
diffuse scattering. Therefore, Yoshioka's approxima- 
tion of replacing G by G O still recovers the multiple 
diffuse scattering terms but the dynamic diffraction 
effects after each event, similar to Hoier's (1973) 
multiple inelastic scattering for plasmon excitation. 
Therefore, the 'absorption potential' has a much richer 
meaning than the conventional interpretation of an 
absorption effect. In practical calculations, the real 
component of v(;) may need to be preserved because it "gh 
may not be small enough for a highly disordered 
crystal. A detailed application of this result for 
transmission electron diffraction will be reported 
separately (Wang, 1996b). 

Based on the discussion above, we must make the 
following modifications to the theory presented in §3. 
Since the reciprocity theorem holds if there is no 
absorption [i.e. (9)] in (12), the calculation of 
tPo(-K, r) should not include absorption, while the 
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calculation of ~0(Ko, r) must include the absorption 
potential. Accordingly, the {Bloch waves} term in 
(15a) is modified to 

{Bloch waves} = C(0 i)*(-K)C(0i)(-K)~'0)(K0) 

x ~/~* (Ko)C(gO ( - K )  C(ff~* ( - K )  

X c~i')(Ko)C~,f)*(Ko), (57) 

where the {Cg} coefficients should be calculated with 
(14) without consideration of absorption potential Vgh,, 
while the calculations of {Cg,} and {Cr} need to include 
the absorption potential [e.g. Vg_ h is replaced by 
(Vg-h + Vgh,) in (14)]. The corrections introduced by 
the absorption potential on v i are ignored. 

The absorption potentials introduced by TDS have 
been calculated by Bird & King (1990) and Allen & 
Rossouw (1990) using the Einstein model. The absorp- 
tion potential introduced by point vacancies has been 
calculated by Dudarev, Peng & Whelan (1992), who 
showed the significance of the non-local characteristic 
of the imaginary potential. Therefore, the conventional 
assumption that V (i) is a fraction of V o [i.e. 
V (i) = AV0(r ), with a proportional constant A << 1] is 
not adequate. 

As a summary, the dynamic form factor is directly 
related to the SRO parameters. These parameters can 
either be measured experimentally using X-ray or 
neutron diffraction or be calculated by Monte Carlo 
similations. The objective of our dynamical theory is to 
simulate quantitatively the electron diffraction patterns 
for deriving the SRO parameters. The calculations using 
(56) need an accurate representation of the electron 
scattering factor at large scattering angles. The 
empirical analytical expression proposed by Weicken- 
meier & Kohl (1991) is expected to give more accurate 
results than that given by Doyle & Turner (1968) 
because special consideration was made at large 
scattering angles. 

6. Conclusions 

In this paper, a formal dynamical theory is developed to 
calculate the diffuse scattering produced by atom 
vibrations and point defects with short-range order 
(SRO). Diffuse scattering not only produces fine details 
in the diffraction pattern between Bragg beams but also 
introduces an imaginary potential that reduces the 
intensities of the Bragg reflected beams. The distribu- 
tion of diffusely scattered electrons and the absorption 
potential are directly related to a dynamic form factor 
S(Q, Q'), which has been described for cases where 
point vacancies and atom substitutions are present, and 
the final results are directly related to Cowley's SRO 
parameters. The equation best suited for numerical 
calculations of diffuse scattering patterns is given in the 
Bloch-wave scheme. The time average on the thermal 

vibration configurations and statistical structure average 
over imperfections have been performed analytically 
before numerical calculation. 

A rigorous theoretical proof is given to show that the 
inclusion of the complex potential in the dynamical 
calculation automatically recovers the contributions 
made by the high-order diffuse scattering, although 
the calculation is done using the equation derived for 
single diffuse scattering. This conclusion gives the basis 
for extending the conventional diffraction theories 
developed under the first-order diffuse scattering to 
cases where the specimen thickness is large and/or the 
degree of disorder is high. 
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